On Weighted Linear Least-Squares Problems Related to Interior Methods for Convex Quadratic Programming
نویسندگان
چکیده
It is known that the norm of the solution to a weighted linear least-squares problem is uniformly bounded for the set of diagonally dominant symmetric positive definite weight matrices. This result is extended to weight matrices that are nonnegative linear combinations of symmetric positive semidefinite matrices. Further, results are given concerning the strong connection between the boundedness of weighted projection onto a subspace and the projection onto its complementary subspace using the inverse weight matrix. In particular, explicit bounds are given for the Euclidean norm of the projections. These results are applied to the Newton equations arising in a primal-dual interior method for convex quadratic programming and boundedness is shown for the corresponding projection operator.
منابع مشابه
A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملGradient methods and conic least-squares problems
This paper presents two reformulations of the dual of the constrained least squares problem over convex cones. In addition, it extends Nesterov’s excessive gap method 1 [21] to more general problems. The conic least squares problem is then solved by applying the resulting modified method, or Nesterov’s smooth method [22], or Nesterov’s excessive gap method 2 [21], to the dual reformulations. Nu...
متن کاملThevenin Decomposition 1 and Large - Scale Optimization
Thevenin’s theorem, one of the most celebrated results of electric circuit theory, provides a two-parameter characterization of the behavior of an arbitrarily large circuit, as seen from two of its terminals. We interpret the theorem as a sensitivity result in an associated minimum energy/network flow problem, and we abstract its main idea to develop a decomposition method for convex quadratic ...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA polynomial-time inexact primal-dual infeasible path-following algorithm for convex quadratic SDP
Convex quadratic semidefinite programming (QSDP) has been widely applied in solving engineering and scientific problems such as nearest correlation problems and nearest Euclidean distance matrix problems. In this paper, we study an inexact primal-dual infeasible path-following algorithm for QSDP problems of the form: minX{12X • Q(X) + C •X : A(X) = b, X 0}, where Q is a self-adjoint positive se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 23 شماره
صفحات -
تاریخ انتشار 2001